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Abstract

Kevin Scharp’s ‘Replacing Truth’ is an ambitious and far reaching
account of the semantic paradoxes. In this critical discussion we examine
one the books central claims: to have provided a theory of truth that
avoids the revenge paradoxes. In the first part we assess this claim, and in
the second part we investigate some features of Scharp’s preferred theory
of truth, ADT, and compare it with existing theories such as the Kripke-
Feferman theory. In the appendix a simple model of Scharp’s theory is
presented, and some potential consistent ways to strengthen the theory
are suggested.

Kevin Scharp’s ‘Replacing Truth’ is an ambitious and far reaching account
of the semantic paradoxes.1 The book is nominally a defence of an inconsis-
tency account of truth. However Scharp brings a wide range of ideas from
epistemology and the philosophy of language to bear on these issues. The re-
sult is a very distinctive view that combines Scharp’s novel theory, involving
two complementary truth-like predicates, with elements from the inconsistency
theory and recent work on relativism. Scharp somehow manages to take this
large collection of disparate ideas and bring them together into a single package.
Although the scope of the book is wide, there are several central themes that
recur throughout the book. I shall be focussing on a couple.

One of the main considerations Scharp offers in support of his theory is that
his theory, unlike his rivals, escapes the revenge paradoxes. I examine this claim
in section 1. Roughly, while many theorists are engaged in the project of giving
a substantive classification of sentences which are ‘paradoxical’ (the feature that
distinguishes the liar from ordinary sentences), historically this has not been a
project that inconsistency theorists have concerned themselves with. Since it is
exactly this project that is under threat from the revenge paradoxes, those who
say nothing or little about it are not targets of a revenge paradox. However,
solving the revenge paradoxes and merely not being the target of one, are not
the same thing. In section 1 I argue that a substantive classification of sentences
of this type is required of an explanatory theory of the liar, and moreover that

∗Many thanks to Kevin Scharp and Jeremy Goodman for discussion.
1References to page numbers and sections will be to Scharp (2013a) unless otherwise noted.
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Scharp doesn’t achieve this with his own fairly schematic notion of ‘safeness’,
which he uses to classify the paradoxical sentences.

Another central component of Scharp’s book is his distinctive formal theory,
ADT, that governs two predicates that are intended to replace the inconsistent
concept of truth. In section 2 I contrast it with a better known theory, the
Kripke-Feferman theory, and in section 3, argue that Scharp’s system is exceed-
ingly weak and uninformative by comparison. Unfortunately Scharp doesn’t
provide us with an underlying picture of descending and ascending truth that
would guide us toward a better theory. These problems, I suggest, ultimately
indicate that a theory based on an antecedently understood picture of truth,
such as the Kripke-Feferman theory, might be more suited to Scharp’s purposes.

1 Diagnoses and revenge

The näıve concept of truth at least appears to be governed by the T-schema:2

T. ‘P ’ is true if and only P

By now we should all be familiar with problems that beset this näıve conception.
If L is the sentence ‘L is not true’, then by substituting L into T and applying
Leibniz’s law we can infer that L is true if and only if it isn’t. If we furthermore
assume the classical laws of logic we can derive from this any conclusion we like.

Something has clearly gone wrong somewhere. But saying where it went
wrong is only half the problem. It is surely also important that we say something
about why it went wrong. Inconsistency theories have traditionally concerned
themselves with answering the second question, leaving logicians to answer the
first (see Chihara (1979), p590-591). According to the inconsistency theory
the concept of truth is governed (in some sense or other) by inconsistent rules.
Abstracting from the specifics, the idea is that these rules are so closely tied to
the meaning of the word ‘true’ that it is no surprise that those employing the
concept are disposed to find instances of T attractive. Of course this response
is not satisfactory without a general story about where derivations like these go
awry – some kind of formal theory of truth – and one of Scharp’s goals is to
‘get in the game’ and provide a response to the first question that is congenial
to the diagnosis in terms of inconsistency.3

It is worth pointing out that it is also unsatisfactory to only meet the first
challenge. It would not do to point out the step in the derivation of absurdity
that you reject and say nothing more. One also wants a picture of what’s going
on with liar-like sentences which predicts that you wouldn’t expect T to hold in
the problematic cases – some illuminating background picture that makes clear
which part of the näıve picture breaks down and why. (We’ll have more to say
about this later.)

2Here, and elsewhere, the 16th letter of the alphabet is to be substituted for a declarative
sentence of English both when it appears in quotation marks and without.

3See Scharp’s response to Beall and Priest’s objections to the inconsistency theory in Scharp
(2013b).
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Now, one the key themes of Scharp’s book – one of the main arguments in
favour of his own version of the inconsistency theory over his rivals – is that,
unlike these rival theories, Scharp’s account addresses and ultimately does not
fall afoul of the revenge paradoxes. Before we assess this contention, then, it is
worth getting clear on exactly how the revenge paradoxes end up entering into
the story, either within an inconsistency account of truth or otherwise.4

The standard recipe for revenge goes something like this. In the process of
addressing the second question – of providing a diagnosis of the paradoxes –
one often attempts to identify some feature of the liar sentence that is shared
by other problematic instances of T (instances involving the Curry sentence,
liar pairs, Yablo’s paradox, and so on), but not shared with the unproblematic
instances of T (instances such as ‘snow is white’, ‘1+1 = 5’ and so on). Extant
examples of this strategy include the claim that the bad instances of T involve
sentences that are ungrounded (Kripke (1975)), fail to express a proposition (e.g.
Prior (1961)), are context sensitive in certain ways (e.g. Burge (1979)), have
been introduced by impredicative definitions (Russell (1903)), are semantically
indefinite (McGee (1990)) or are semantically unstable (e.g. Gupta and Belnap
(1993)).5 In each case one can construct a revenge sentence R which says of itself
that it is either untrue or has the status in question. The assumption that the
sentence doesn’t have the problematic status leads directly to contradiction.6

So we can prove that R doesn’t have the status; and so, of course, R either
doesn’t have the status or is untrue. But then we have just proven R itself.7 It
seems that if one attempts to diagnose the paradoxes this way, one has to assert
sentences that, like the liar, have the very status alleged to be problematic.

Note, however, that traditional inconsistency theories of truth tend not to
spend much time on the project of characterising the problematic sentences:
finding that feature of the liar that distinguishes it from those sentences to
which disquotational reasoning straightforwardly applies. Rather they focus on
explaining why we find T so seductive. It is therefore not straightforward to
run a revenge paradox on the inconsistency theorist, because we have nothing
playing the role that, say, groundedness plays in Kripke’s theory.

The cost of this apparent victory is that this leaves us lacking an informative
characterisation of the problematic instances of T. Although we have a story

4A word of caution: in the literature on the liar there is a cluster of very closely related
problems that get labelled the ‘revenge paradox’ by different people. In the following I focus
on revenge paradoxes that arise when one introduces vocabulary for the purposes of diagnosing
the semantic paradoxes (see Bacon (2015)). Scharp doesn’t focus explicitly on this aspect of
the revenge paradoxes, and so his discussion of revenge is slightly more narrow than I think
it should be. At any rate, the problems I’m highlighting here need addressing whether or not
one calls them ‘revenge’.

5The above theories all characterise the problematic instances by a restriction on the
sentences appearing on the left-hand side of T. In Bacon (2015) I suggest that we should
be using a classification that restricts on the right-hand side: a distinction that would be
drawn using an operator rather than a predicate expressing a property of sentences.

6If it didn’t have the status then we’d be able use T (since it’s not liar like) and conclude
that R is true if and only if it’s either untrue or doesn’t have the status. Under the assumption
that it doesn’t have the status this is of course impossible.

7See Bacon (2015) for discussion and a more rigorous version of the argument.
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about how things went wrong, this theory says nothing predictive about when
things will go wrong. The crucial question, then, is whether we really needed
such a classification in the first place. Is it sufficient to simply state that T is
at fault, but stop short of giving a characterisation of the instances of T are at
fault?

In my view some kind of informative classification of this sort is required
of an explanatory theory of the paradoxes. To see why, consider the following
sentence:

(L∗) Either L∗ isn’t true or ‘snow is white’ isn’t true and snow is white

Two further instances of T + Leibniz’s law gives us:

1. ‘Snow is white’ is true if and only if snow is white.

2. L∗ is true if and only if either L∗ isn’t true or ‘snow is white’ isn’t true
and snow is white

Neither of these two instances of T are inconsistent on their own, however from
both together one can prove a contradiction. A predictive theory of the liar
ought to tell us which instance is causing the problem.

Most of the theories listed earlier tell us which instance to reject. Unsur-
prisingly, they all deliver the verdict that it’s 2. The grounding theorist, for
example, can point out that L∗ is ungrounded, whereas the sentence ‘snow is
white’ is not: the latter bottoms out in non-semantic facts, whereas the former
does not. The revision theorist can point out that L∗ is semantically unstable
in the sense of Gupta and Belnap (1993), so we should favour 1 over 2. And so
on.

But which instance does the inconsistency theory predict we should reject?
One could point out that L∗ contains a word whose constitutive rules are incon-
sistent – the word ‘true’ – whereas ‘snow is white’ does not. This will clearly
not do, however, because there are pairs of instance of T analogous to 1 and
2 where it is clear which instance to reject, but where both contain the word
‘true’. Consider the sentence L∗∗ = ‘either L∗∗ isn’t true or “snow is white’ is
true’ isn’t true and ‘snow is white’ is true’ and the corresponding two instances
of T:

1′. “Snow is white’ is true’ is true if and only if ‘snow is white’ is true.

2′. L∗∗ is true if and only if either L∗∗ isn’t true or “snow is white’ is true’
isn’t true and ‘snow is white’ is true.

Where the grounding theory, for example, predicts we should relinquish 2′, the
above proposal classifies both in the same way since both instances concern
sentences containing the word ‘true’. (Nor would it do to suggest that the bad
instances of T be inconsistent: both 1′ and 2′ are consistent on their own; it is
only together that they’re inconsistent.)

So while it is certainly true that one cannot flatfoodedly run the revenge
paradoxes against inconsistency theories of truth, it is primarily because it is
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unclear how they resolve the question of which instance of T must be rejected;
simply noting that the word ‘true’ has constitutive principles that are inconsis-
tent does not answer this.

In this sense, the accounts of Chihara (1979) and other similar inconsistency
theories, cannot really be said to avoid the revenge paradoxes. They are merely
not engaging in the kind of project to which revenge style objections are usually
directed.

How, then, does Scharp’s claim that his own theory avoids the revenge para-
doxes bear on this? On this point Scharp offers something more than the basic
inconsistency theory delivers: he provides us with a formal theory, that con-
tains something he calls a ‘safety’ predicate, which plays something like the role
described above in classifying sentences into problematic and unproblematic. A
safe sentence, according to Scharp, is a sentence to which one can apply disquo-
tational reasoning. Moreover, Scharp’s theory of safety is consistent: he shows
that one cannot derive any contradictions from his theory of safeness and truth.
In particular there are revenge sentences involving the safety predicate, but one
cannot derive any contradictions from them. (What happens to the revenge
argument we gave earlier? It turns out that the theory proves of some of its
theorems that they are unsafe; however since safety is a technical notion that
Scharp takes as primitive it is hard to assess whether this result is problematic
or not.8)

Perhaps, then, we can answer our challenge by arguing that one of L∗∗ or
“snow is white’ is true’ is unsafe. Although it’s not implausible that Scharp
could deliver this particular verdict, Scharp tells us very little about what a
safe sentence is, other than that it is a sentence to which one can safely ap-
ply disquotational reasoning, and that it is governed by the other principles of
Scharp’s theory. Unfortunately the theory in question is quite weak; a point we
shall return to in section 3.9

Contrast this with the grounding or revision theories of truth. Given a
simple language, such as the language of arithmetic with a truth predicate, these
theories provide explicit definitions of the grounded and semantically stable
sentences of that language. We have necessary and sufficient criteria for working
out when a sentence of this language is of the good or bad form. Scharp’s theory
of safety, on the other hand, does not supply criteria like this because the theory
that governs it is radically incomplete. For example, although the axioms of
Scharp’s theory are provably safe, if you conjoin some of those axioms together
the resulting conjunction is not provably safe. The theory on its own does not
tell us whether these conjunctions are safe (see section 3 for more examples like
this).

Now presumably if Scharp were to flesh out the notion of safeness in more

8The standard puzzle for this kind of theory is that it seems as though Scharp must go
about asserting sentences which by his own lights are unsafe. Scharp says very little about
the relation between safety and assertion; although see the short discussion in §8.6.

9A sentence is safe in Scharp’s theory if it is either descending true or descending false.
But the notion of being descending true is similarly fairly unconstrained – see the discussion
in sections 2 and 3.
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detail – give us a background picture, from which answers to these questions
would just fall out – we would have the resources to determine whether conjunc-
tions of Scharp’s axioms are safe.10 But the problem is that it is far from clear
that once we have such a characterisation of the safe sentences we won’t inad-
vertantly reinstate the revenge paradox. This is exactly what is so hard about
the revenge problem: as soon as one tries to say something informative about
the problematic sentences, one runs into revenge. It is for exactly this reason, as
well, that revenge paradoxes can be directed at grounding and revision theories
of truth. Of course, the less one says about the safety predicate, the harder it
is to formulate the revenge objection. This much goes for any subject matter
– the less one says about something, the harder it is to formulate objections to
what you’re saying – but it would be misleading to think of this as a way of
avoiding certain kinds of objections.

In short, revenge is quite a delicate matter for the inconsistency theorist.
Although the inconsistency theorist typically doesn’t accept the kind of ideology
needed to get a revenge paradox going, it is arguable that this ideology must
be part of any explanatory theory. Scharp’s introduction of a safety predicate
seems like a step in the right direction in this regard, however it is radically
underdetermined which sentences are safe. More information about what counts
as safe is needed before we can really assess the claim that Scharp has avoided
the revenge paradoxes.

2 Scharp’s theory of ascending and descending
truth

Let us now turn to Scharp’s positive theory of truth. According to Scharp, the
ordinary concept of truth is inconsistent: some of the principles constitutive of
the concept are false (possibly even inconsistent).11 The following are two such
principles for the concept of truth:

T-In If p then ‘p’ is true.

T-Out If ‘p’ is true then p.

A centerpiece of Scharp’s book is the introduction of a pair of replacement
concepts for theorizing consistently about truth. To adopt Scharp’s own analogy,
this pair of concepts stand to truth as rest mass and relativistic mass stand to the
pre-relativistic uses of the word ‘mass’ before we discovered that the principles
constitutive of the latter concept were false.

In the case of the pre-relativistic concept of mass some principles constitutive
of the original concept are satisfied by rest mass, whilst some are satisfied by

10Scharp does give us a model theory, but it has little intuitive rationale. He does not, at
any rate, go to any length to explain what safety amounts to in terms of the model theory, or
to say informally what is wrong with sentences that turn out unsafe in the model.

11A principle is constitutive of a concept, according to Scharp, if possessors of the concept
automatically gain a kind of (defeasible) entitlement to those principles.
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relativistic mass. Scharp’s replacement concepts, which he calls ‘descending’
and ‘ascending truth’ respectively, behave similarly with each inheriting one
of the two jointly inconsistent principles constitutive of the original concept of
truth:

AT-In If p then ‘p’ is ascending true.

DT-Out If ‘p’ is descending true then p.

Neither concept alone can do the explanatory work that the inconsistent concept
of truth was supposed to do, but just as with the case of mass, they are each
supposed to occupy a consistent fragment of the role of truth.

Considerations of liars involving these new predicates straightforwardly raise
the question of whether the two revised principles are consistent. One needs
not only to account for the sentences which say of themselves that they are not
ascending true, and descending true, respectively, but also more complicated
sentences such as the sentence that says of itself that it is not ascendingly
descending true, and so on. Although Scharp doesn’t go this route, there is
actually an extremely natural way to co-opt constructions familiar from more
standard theories of truth to achieve these principles.12

Before we consider Scharp’s solution to this problem it will be instructive to
consider one of these theories – the Kripke-Feferman theory (henceforth, KF) –
as a useful point of comparison in what follows.13 KF is a consistent theory of
truth which accepts all instances of of T-Out. An intuitive way to think about
the theory is by considering a particularly natural model for the theory: given a
classical model, M , of a non-semantic language L, we can extend it to a model
of LTr (L with a truth predicate) by simply setting the extension of the truth
predicate to the set of LTr sentences that are grounded and true relative to M
(for a precise definition of ‘grounded’ see Kripke (1975)).

According to this theory the liar sentence L is neither true nor false.14 Think-
ing in terms of our model this is easily verified, since neither the liar or it’s
negation is grounded. Since, in particular, L is not true, one has to relinquish
T-In, otherwise one could conclude that ‘L is not true’ is true, and hence that
L is true after all. However, there is another predicate definable within KF that
does satisfy the axiom T-In, the dual of the truth predicate: ‘doesn’t have a true
negation’ (it stands to truth as possibility does to necessity). Since the original
truth predicate classifies the liar as neither true nor false, the dual predicate
classifies the liar as both true and false. More importantly, every instance of

12There is, of course, a very simple way of seeing the consistency of these two principles:
just let the descending truth predicate apply to nothing and the ascending truth predicate
apply to everything. We are looking for a pair of predicates with more interesting laws than
this.

13I am here working with the version of KF includes the claim that not all sentences are
true, which is sometimes omitted from axiomatisations. A close variant of KF, VF, based
on supervaluations is closer to Scharp’s proposal, since it guarantees that the theorems of
classical logic are true (Cantini (1990)). The difference between these theories will not really
matter for my exposition, however, so I shall stick with KF since it is more familiar.

14By false I simply mean: has a true negation.
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T-In is validated for the dual predicate: the schema ‘if p then ‘not p’ is not
true’ is a theorem of KF since it follows from the ‘not p’ instance of T-Out by
contraposition and the double negation laws – thus the dual of truth satisfies
T-In within KF.

These observations make clear that one can get a rich and interesting two
predicate theory of truth out of a single predicate theory such as KF by simply
interpreting descending truth with the theory’s truth predicate and interpreting
ascending truth with its dual. Since we have such a simple and natural two
predicate theory at our disposal it is worth examining the reasons Scharp doesn’t
simply adopt this kind of theory.

According to Scharp the basic theory KF is unsatisfactory because the theory
proves that some of its own axioms aren’t true: each instance of T-Out is part
of the theory, but the claim that those instances of T-Out are true is not, and
moreover cannot be consistently added to the theory. In the two predicate
variant this results in ‘a theory of descending truth that is not itself descending
true’ (p150). He calls this the ‘self-refutation problem’, and considers it to be a
form of the revenge paradox (see the discussion of Maudlin on pp102-104). Thus
Scharp rejects the two predicate variant of KF on the grounds that it succumbs
to the self-refutation problem.

In fact this feature is not just an artefact of KF. One can show that any
theory of descending truth (i.e. a theory that contains DT-Out) which also
contains (i)-(iii) is inconsistent with the existence of a descending truth liar:

(i) The instances of DT-Out are descending true: D(pD(pφq) → φq)

(ii) The logical axioms are descending true: D(pφq) whenever φ is a logical
axiom.

(iii) Modus ponens preserves descending truth: D(pφ → ψq) → (D(pφq) →
D(pφq)).

This result is known as Montague’s paradox (see Montague (1963)). Since deny-
ing either (i) or (ii) would involve succumbing to the self-refutation problem,
Scharp opts for the third option.15 Modus ponens, and indeed many other
rules of proof in Scharp’s preferred theory ADT, do not preserve descending
truth. The result, as Scharp puts it, is a theory of descending truth that is itself
descending true.

However one has to be careful: although the axioms of ADT are descending
true, many of its theorems aren’t simply because the rules of proof can take
descending truths to things that aren’t descending true. Indeed there are the-
orems of ADT that ADT actually proves aren’t descending true, such as the

15He cites Hartry Field’s arguments to the effect that all theories of truth have rules that
do not preserve truth (Field (2006)). Note that, pace Field, this is not entirely correct. There
are, for example, theories based on revision and internal supervaluational constructions can
be formulated in such a way that all of their rules provably preserve truth. These theories
crucially must not be thought of as having the rule of inference ‘from φ infer Tr(pφq)’ and
its converse, although they can have the rule of proof ‘if φ is provable, so is Tr(pφq)’ and it’s
converse, which can be captured in the object language using provability predicates: for the
in and out rulse this includes Pr(pφq)↔ Pr(pTr(pφqq).
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descending liar. If one takes the self-refutation problem seriously, as Scharp
apparently does, I think more discussion of this feature is required.

The first thing to note is that although Scharp’s theory counts all of its
axioms as descending true, this feature of the theory is extremely sensitive to
how it is axiomatised. Logically equivalent axiomatisations of ADT can disrupt
this feature. For example, the rule of double negation introduction does not
preserve descending truth. Suppose that A is any one of Scharp’s axioms –
for concreteness sake, suppose it is an instance of DT-In. It is impossible to
prove that ¬¬A is descending true in ADT (the model I describe later, for
example, does not count these sentences as descending true), so if I were to
remove A from the theory and replace it with ¬¬A, although I would have a
logically equivalent axiomatisation, the resulting system no longer proves that
its axioms are descending true. A similar point can be made about conjunction
introduction: according to Scharp’s theory one can have two descending true
sentences whose conjunction is not descending true. So if I had decided to
conjoin the axioms of Scharp’s theory instead of merely listing them separately I
would no longer have a theory that can prove that all of its axioms are descending
true (again, this is demonstrated by the model below).

When Scharp presents his theory ADT he does not say which of the logical
connectives he is treating as primitive and which (if any) as defined. For reasons
similar to those discussed above, this actually makes a difference to the content
of the theory. If you took every connective as primitive then the theory can
prove D(pD(pφq) → φq) but not D(p¬D(pφq) ∨ φq), whereas if you defined
A→ B as simply ¬A∨B then these would be identical and both would be part
of the theory. These issues becomes significant later when we try to reaxiomatise
Scharp’s theory by treating different things as primitive.

Of course Scharp could augment his theory so that it included the claim that
this or that particular logical equivalent of an axiom is also descending true (he
would have to modify his consistency proof). But the point I’m making can be
generalised quite significantly: one can show that descending truth cannot be
preserved under logical equivalence, on pain of paradox. This follows from an
argument Scharp discusses himself, attributed to Dana Scott (see §6.6.4), that
establishes that descending truth cannot be consistently closed under the sub-
stitution of logical equivalents (and thus neither can any candidate extensions of
Scharp’s system). It follows that it is always possible to find reaxiomatisations
of the theory which fall afoul of the self-refutation problem: logically equivalent
ways of axiomatising the theory whose axioms are not descending true.

It is also unclear how stable Scharp’s position on Montague’s paradox is
is. Scharp’s attitude that it’s OK to have rules of proof that do not preserve
truth, but not OK to have untrue axioms requires one to draw a somewhat arbi-
trary line between rules of proof and axioms. Even in the case of propositional
logic there is no standard way of haloing certain valid inferences as the rules
of propositional logic and other valid principles the axioms. Natural deduction
systems favour rules over axioms, for example, whereas Hilbert formalisations
favour axioms over rules. In a Hilbert system one can derive the rules of the
natural deduction systems, and in the natural deduction systems one can derive
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the axioms of the Hilbert systems, but the choice to use one formalism rather
than the other seems of little significance other than economy.

Indeed, if ones goal is simply to provide a theory of descending truth which
proves that all of its axioms are descending true at the expense of having rules
that preserve descending truth, then that goal can be achieved extremely easily.
All one needs to do is reformulate the theory – be it KF, or what have you –
so that it has no axioms at all, and has instead a bunch of rules of inference in
their place. Here’s a simplistic way to do that: replace each axiom, A, of the
original system with the rule ‘infer A from no premises’. I am certain that this
maneuver would not satisfy Scharp, but I take it that this just goes to show
that we need a clearer conception of what the self-refutation problem is, and
what it would take to solve it. As such, I think, it is unclear whether Scharp’s
own proposal really meets the challenges he sets against his rivals.

3 The theory ADT

So what exactly is Scharp’s theory of truth? Scharp presents his theory as a
list of 20 axioms that govern both descending truth and ascending truth, and
a notion of a sentence being ‘safe’ which effectively amounts to saying that
the sentence is either descending true or descending false: in other words, it is
not a descending truth gap (or equivalently, it is not an ascending truth glut).
However there is some redundancy in Scharp’s axiomatisation which obscures
some notable features of the system. One thing we’ve noted already is that once
we have either a descending or ascending truth predicate, we can simply define
the other as its dual. To get a feel for the theory, then, it might make sense just
to look at an axiomatisation purely in terms of one of the truth predicates, and
treat the other predicate as defined. By getting a clearer picture of one of these
predicates, we automatically can see what happens to the other.

Below is one such axiomatisation of ADT in terms of a descending truth
predicate only. I assume here that the base language is that of arithmetic, and
that in addition to the axioms below we have all of the axioms of Peano arith-
metic. As noted above, it potentially matters which logical connectives I take
as primitive; to avoid arbitrariness I shall take them all as primitive, although
I shall treat ascending truth and the safety predicate as defined: A(pφq) as
¬D(p¬φq) and S(pφq) as D(pφq) ∨D(p¬φq).

1. D(pφq) → φ

2. D(p¬φq) → ¬D(pφq)

3. D(pφ ∧ ψq) → D(pφq) ∧D(pψq)

4. D(p¬(φ ∨ ψ)q)) → D(p¬φq) ∧D(p¬ψq)

5. D(pφq) ∨D(pψq) → D(pφ ∨ ψq)

6. D(p¬φq) ∨D(p¬ψq) → D(p¬(φ ∧ ψ)q)
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7. s = t→ D(pφq) ↔ D(pφ[s/t]q).16

8. D(pφq) if φ is a theorem of PA, an instance of 1-7, or is one of the principles
(i)-(ix) (see footnote.17)

To show the consistency of ADT Scharp introduces a fairly elaborate construc-
tion involving revision sequences and a novel way of modeling truth predicates
which aren’t closed under deduction which he calls ‘xeno models’. As far as I
can see, these models have little intuitive rationale, and are primarily introduced
as a technical device for showing that no contradictions follow from the axioms
of ADT. While there is certainly nothing wrong with this approach to consis-
tency arguments, I suspect that the complexity of this particular construction
obscures some of the more quirky features of the theory.

Alternatively, the consistency of ADT can be demonstrated with a fairly
humdrum construction, albeit one which I think reveals the structure of de-
scending truth in an illuminating way. Consider the following three rules of
inference:

From φ infer φ ∨ ψ and ψ ∨ φ

From ¬φ infer ¬(φ ∧ ψ) and ¬(ψ ∧ φ).

From φ infer φ′ whenever a = b is a true arithmetical identity statement
and φ′ is the result of substituting some occurrences of b with a in φ.

We can then think of the sentences that are descending true in Scharp’s theory
as those sentences that are either axioms of his theory (the principles (1)-(7), (i)-
(ix) listed above), theorems of PA (including the theorems of logic) or things one
can prove from those two sets using only the above rules. Indeed, it turns out
that if we let M be a standard model of arithmetic that assigns the descending
truth predicate the set of sentences just described then M is a model of ADT
(see appendix).18

This model is also, in some sense, a minimal model of ADT: the descending
truth predicate is as small as it can be in a way that’s consistent with the

16This principle corresponds to Scharp’s E principles, which appear to be stated as rules.
However he treats them as axioms in the statement of his axiom D7.

17Principles (i)-(ix) are principles that are redundant in Scharp’s axiomatisation, modulo
definitions, except for the fact that he declares them descending true. They are, respectively:
(i) φ→ ¬D(p¬φq), (ii) ¬¬D(p¬φq)→ ¬D(p¬¬φq), (iii) ¬D(p¬φq)∨¬D(p¬ψq)→ ¬D(p¬(φ∨
ψ)q), (iv) D(pφq) ↔ ¬¬D(p¬¬φq), (v) D(pφq) ∨ D(p¬φq)) ↔ (D(pφq) ∨ ¬¬D(p¬φq), (vi)
φ ∧ (D(pφq) ∨ D(p¬φq)) → D(pφq), (vii) ¬D(p¬φq) ∧ (D(pφq) ∨ D(p¬φq)) → φ, (viii) s =
t → (¬D(p¬φq) ↔ ¬D(p¬φ[s/t]q)), (ix) s = t → (D(pφq) ∨ D(p¬φq)) ↔ (D(pφ[s/t]q) ∨
D(p¬φ[s/t]q)) when s = t is a true arithmetical identity. Note that all of these principles are
obviously logically equivalent to or provable from axioms (1)-(7). However we have to include
them manually since descending truth isn’t closed under logical equivalence or consequence,
and Scharp’s theory treats these particular sentences as descending true, modulo definitions.

18Note here that I don’t include conjunction elimination, despite the presence of axiom 3.
This is because the set I’ve described is already closed under conjunction elimination: the
only conjunctions in the extension of D are theorems of arithmetic, and the conjuncts in this
case are also theorems of arithmetic. A similar point applies to axiom 4, and the rule it
corresponds to.
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axioms of ADT. What we can see quite clearly from this model is that the
descending truth predicate is closed under disjunction introduction, another rule
very similar in spirit to disjunction introduction (given deMorgan equivalence)
and a principle that allows us to substitute coreferring terms. As we noted
above, it cannot be closed under modus ponens on pain of paradox.

But there is a lot of space between the rules we can close descending truth
under in Scharp’s framework, and the rules we can’t. For example, note also
that conjunction introduction does not preserve descending truth in our model,
nor does double negation elimination and introduction, the deMorgan laws or
the contraposition laws. In fact, in the above model even though the axioms
(1)-(7) are descending true, no conjunction of them is descending true. Not
even the conjunction of an axiom with itself is descending true in this model, so
it follows that although ADT can prove that D(p0 = 0q) → 0 = 0 is descending
true, for example, it can’t prove that the conjunction (D(p0 = 0q) → 0 =
0)∧ (D(p0 = 0q) → 0 = 0) is descending true. Scharp’s framework goes a small
way to respecting deMorgan equivalence, but not very far: we make sure that we
are not only closed under disjunction introduction, but also negated conjunction
introduction. However we fall far short of the full deMorgan equivalences.

A more striking feature is that descending truth is not provably closed under
the associativity or commutivity laws for conjunction. This fact is not demon-
strated by the model I give in the appendix, but can be seen by taking any three
axioms, A, B and C, and adding the conjunction ((A ∧ B) ∧ C) and (A ∧ B)
to the extension of the descending truth predicate described in the appendix
model and closing under the three laws of inference. In the resulting model
((A ∧ B) ∧ C) is descending true but (A ∧ (B ∧ C)) is not. One can similarly
construct a model in which (A ∧B) is descending true but not (B ∧A).

Now it is clear that Scharp does not consider ADT to be the full story (see
§6.4). As a theory it is surely incomplete: perhaps there are further truths
about descending and ascending truth that the theory does not capture. In-
completeness is an inevitable feature of many theories, after all. For instance,
there are many truths about the natural numbers that one cannot prove within
the mathematically rich system of Peano arithmetic. If the issue was just a
matter of incompleteness, then although the above observations reveal the ex-
tent of the incompleteness there is no particularly pressing worry for Scharp’s
overall project. Of course one needs to know that any desirable principles we
are missing can be consistently added to ADT, and since Scharp has no model
of these further principles we have no guarantee that they can be; this at most
indicates that further work is still needed.

However I think that behind the issue of incompleteness lurks a more sub-
stantial, methodological problem with Scharp’s approach. The notions of as-
cending truth, descending truth and safety are all technical notions: they are
replacements for the inconsistent pretheoretic concept of truth, and they simply
aren’t concepts we had prior to theoretical investigation. In so far as we have
a grasp on these notions at all, it is acquired solely by the things Scharp tells
us about them. In this respect ascending and descending truth are quite unlike
the arithmetical concepts: the former concepts are explained to us by the theo-
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retical role that they play, whereas we clearly have an self-standing grasp of the
arithmetical concepts independently of any axiomatisation of them.

The above observations, however, indicate that this theoretical role is actu-
ally quite thin. We are told, for example, that ascending and descending truth
are supposed to obey T-in and T-out respectively. This is consistent with as-
cending truth applying to every sentence, and descending truth applying to no
sentence. The more substantial theory, ADT, does a little more to narrow things
down, but as we have seen it leaves much open. One might hope to beef up
the theoretical role of ascending and descending truth by relating them to the
norms of assertion and belief. Unfortunately, neither ascending nor descending
truth hook up with assertion or belief in a straightforward way: clearly the the-
orems of ADT ought to be assertable and believed, but the theorems aren’t all
descending true, and dually there are ascending truths which aren’t assertable
– ascending truths can sometimes be inconsistent with one another. In short,
we have very little to go on.

In light of this I think talk of the incompleteness of ADT or the idea of a
better, more substantial theory of descending and ascending truth, characteris-
ing a larger range of principles governing the concepts, is a bit premature: we
don’t really know what we’re aiming for. It is worth contrasting the situation
here with the situation in KF, for example. KF sets out to axiomatise the no-
tion of a grounded truth: a sentence whose truth is ultimately grounded by the
non-semantic facts. The concept the theory is characterising is clearly in sight
prior to the project of trying to axiomatise it, much like Peano arithmetic, and
moreover, the theory has a set of intended models with an intuitive rationale
behind them. As such we have a clear guide as to which inferences involving
truth are to be accepted, and we have the resources to prove that a given theory
is complete.19 But what is guiding our choices when we come to strengthening
ADT? There are pairs of natural axioms that can be consistently added to ADT
on their own, but not together – how do we decide in these cases? Why, for
example, does Scharp insist that descending truth is closed under disjunction in-
troduction, but not conjunction introduction? It is hard to imagine motivating
a background picture which favours one of these laws but not the other.20

It is perhaps interesting to note at this juncture that Scharp could have
consistently added more principles to ADT if he had wanted. For example, if
we added conjunction introduction and elimination and double negation intro-
duction and elimination to the three rules listed above, then the consistency
proof in the appendix extends completely straightforwardly; one could have
these principles if one wanted.21 There are, however, other rules I could have

19Indeed, you can prove the completeness of KF with respect to the class of all models that
result from a fixed point of a Kripke construction. Perhaps of more interest is the fact that if
we are just interested in the minimal fixed points of Kripke’s construction then no recursive
axiomatisation is possible: the model theory is all we have to go on.

20Conjunction introduction is one of the few rules, along with modus ponens, that Scharp
is explicit about: descending truth is closed under neither.

21Once one has added conjunction introduction the resulting set is no longer closed under
conjunction elimination, so we must add it manually to get axiom 3. The proof of consistency
is basically the same, except that one has to consider a few more cases for the conjunction
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added instead which would have precluded me from consistently adding these
rules;22 the moral is that we need to be told more about the concepts we are
axiomatising before we start trying to make these choices.

4 Appendix

Let C(S) be the smallest set containing the set S that is closed under the three
rules of inference listed in section 3, and let LTr be the language of arithmetic
with a truth predicate.

Let M be the model of this language that assigns the standard interpretation
to the arithmetical vocabulary and assigns X = C({φ | φ an instance of (1)-(7),
(i)-(ix) or a theorem of PA}) as the interpretation of D. Then M is a model of
ADT.

Axiom 2: is validated since X is a classically consistent set (you can con-
struct a standard model by setting the extension of D to be the empty set).

Axiom 3/4: if φ ∧ ψ ∈ X then it is because φ ∧ ψ is a theorem of PA (no
other members of X are conjunctive). Thus both φ and ψ are theorems of PA
and are thus in X. The argument for axiom 4 is basically the same.

Axiom 5/6: if φ ∈ X or ψ ∈ X then φ ∨ ψ ∈ X since X is closed under
disjunction introduction. Same argument for (6).

Axiom 7: if a = b is true in M it is a true arithmetical identity statement
so φ is in X iff φ′ is, since X is closed under the third rule.

Axiom 8: each of the axioms (1)-(7), (i)-(ix) and the theorems of PA are
members of X by stipulation.

Axiom 1: we prove by induction on formula complexity that every member
of X is true in M . Say that φ and ψ are s-equivalent if they can be gotten by
making a substition of two terms that constitute a true arithmetical identity.
Note that s-equivalents of theorems of PA are theorems of PA.

If φ is atomic and φ ∈ X then φ is a theorem of PA (no other members of
X are atomic). So φ is true in M since M is a standard model.

φ = φ∧ψ. The only members of X that are conjunctive are the theorems
of PA, so these instances of (1) are true in M .

φ = ψ ∨ χ. Suppose φ ∈ X. Then either φ is a theorem of arithmetic (see
above) or φ was inferred by disjunction introduction (or is s-equivalent to
something inferred by disjunction introduction). So we know that ψ ∈ X
or χ ∈ X, and by inductive hypothesis either ψ or χ is true in M . Either
way ψ ∨ χ is true in M . (If φ was merely s-equivalent to something
inferred by disjunction introduction then either something s-equivalent to
ψ or something s-equivalent to χ is in X, and we can reason analogously.)

and negation clauses of the inductive proof of axiom 1.
22The rule: from A and ¬(A∧B) infer ¬B, for example, is not consistent with double nega-

tion elimination, for then ¬(A∧¬B) would behave exactly like the conditional in Montague’s
theorem.
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φ = ¬ψ. Suppose φ ∈ X. Then either φ is a theorem of arithmetic
(see above) or φ = ¬(ψ ∧ χ) and was inferred by the second rule (or
is s-equivalent to something inferred by that rule). So either ¬ψ ∈ X
or ¬χ ∈ X, and by inductive hypothesis either ¬ψ or ¬χ is true in M .
Either way ¬(ψ∧χ) is true in M . (If φ is merely s-equivalent to something
inferred by the second rule we can reason analogously.)

φ = ψ → χ. Suppose φ ∈ X. Then either φ is a theorem of arithmetic
(see above), or an instance of the principles (1)-(7), (i)-(ix) or s-equivalent
to one of them. If it is an instance or s-equivalent to an instance of (2)-(7)
then φ is true in M by the above arguments. . Suppose, then, that it
is an instance of (1): φ = D(pψq) → ψ. We can see that this is true in
M as follows: suppose ψ ∈ X. Since ψ has less complexity than φ we
know that ψ is true in M , so D(pψq) → ψ is true in M . (This works if
φ is merely s-equivalent to an instance of (1).) Finally, M also validates
principles (i)-(ix) since they are all provable from principles (1)-(7) and
M is a classical model.
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